Technical Note
CMU/SEI-2001-TN-025

20011115 021

Carnegie Mellon
Software Engineering Institute

Analyzing Enterprise
JavaBeans Systems Using
Quality Attribute Design
Primitives

Anna Liu

Len Bass
Mark Klein

October 2001

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title 1X of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these staternents should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Note
CMU/SEI-2001-TN-025

Analyzing Enterprise
JavaBeans Systems Using
Quality Attribute Design
Primitives

Anna Liu

Len Bass
Mark Klein

October 2001

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and development center sponsored by the
U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this
document for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute. a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

printed 11/1/2001 1:09 PM version number 1 / sdc

Table of Contents

Y o3 { g Lo R, vii
1 [[3Y 0o To [T (Lo o O 1
2 Quality Attribute Primitives.........cccvvvncciiiiciiscmenrncneeensesnssseseenesseinnnes 2
2.1 Quality Attribute General Scenarios..........ccccvvveirciiiiiciciinniiiieceee 2
2.2 Quality Attribute Design Primitives..........eveve, 3
3 Enterprise JavaBeanscooiiiieemmirrnssineeesnnnnnssssessnseeesenennssesassan 5

4 Analyzing Enterprise Java Beans Systems Using Quality Attribute

Design Primitives.......ccccccciinmeiinisencrcsesninniinssscssessiessssnsessssssssnsssnsns 8

4.1 A Typical Configuration: A Session Bean-Only Architecture 8

B~ Vo] o] (o - Lo o HUUUR O 10

4.3 Modifiability ..oceeeveereeeieeiree e 11

44 PerfOrMANCE. ...cceeieee e 12

4.5 Availabilityccoeiiriiiiiee 14

5 Insights into EJB from the AnalySis......c..ccccmmrmmmininimicssnessssnesnnsssannens 17
5.1 Design Decision SUPPOMt........cevvieiiiiimiiiisieeereeees 17

5.2 Evaluating EJB Paradigm.........ccccvimviiiiniiiiinincninecccinccs e 17

ST oY T £ T = T] 4 N 19
ReferenCes ...cciiviriiiiiiiiiiiisnenmrnn ettt rrsresssssss s s s s s s snensnsennnssssenssnantenassannnnnnnnns 20
Appendix: Attribute Primitives and Attribute Propertiescceeuu...es 21
A1 Modifiability Attribute Primitiveseeeeveiiiiincniiiicinininnnn, 21

A.2 Performance Attribute Primitivesccoeeiiiiiniiiiiiiiinnns 23

A.3 Availability Attribute Primitives..........ccoeviciiiiiicininiiinnes 24

CMU/SEI-2001-TN-025 i

CMU/SEI-2001-TN-025

List of Figures

Figure 1: J2EE Multi-Tiered Application ArchiteCturec.ccooeveeieniiinnnnnnne. 6
Figure 2: A Simple EJB Application Architecture............cocooireiiiininiinniincnns 9

CMU/SEI-2001-TN-025 iii

CMU/SEI-2001-TN-025

List of Tables

Table 1:
Table 2:

Table 3:
Table 4:
Table 5:
Table 6:

Modifiability SCENANOSeceeveeeireiiiiriire e 11
Locating Modifiability General Scenario Within Attribute Primitive

L] 0=} (e o PO 11
Performance SCENANOSc.ccvvreirirreeeereeeee e serre et enieeesssbeeenes 13

Locating Performance General Scenario Within Attribute Primitive.. 13
Availability SCENAIIOS......ccovviiiiiiiiiiiii e 15

Locating Availability General Scenario Within Attribute Primitive 15

CMU/SEI-2001-TN-025 v

Vi

CMU/SEI-2001-TN-025

Abstract

Quality attribute requirements such as those for performance, security, modifiability,
reliability, and usability have a significant influence on the software architecture of a
system. At the Software Engineering Institute, we are studying and codifying the
relationship between quality attribute requirements and the architectural design strategies
that impact their achievement. In CMU/SEI-2000-TN-017 [Bass 00], we introduced the
notion of quality attribute design primitives. Quality attribute design primitives (or
attribute primitives) are architectural building blocks that target the achievement of
one—or sometimes several—quality attribute requirements. Our intent is to codify a
fairly comprehensive set of attribute primitives in a manner that articulates how each
attribute primitive makes its specific contribution toward the achievement of one or
several attribute goals. We believe this will provide a very powerful “language” for
constructing or analyzing software architectures in relation to quality attribute
requirements. To determine the expressive and explanatory power of these attribute
primitives, we will examine various classes of systems. This paper uses attribute
primitives to examine the qualities of Enterprise JavaBeans (EJB)-based systems. In
particular, we find that attribute primitives hold promise for providing insight into the
quality attribute consequences of using various EJB infrastructure features.

CMU/SEI-2001-TN-025 vii

viii CMU/SEI-2001-TN-025

1 Introduction

Architects need to understand their designs in terms of quality attributes. For example,
they need to understand whether they will achieve deadlines in real-time systems, what
kind of modifications are supported by their design, how the system will respond in the
event of a failure, and so on. There are large and thriving attribute communities that study
various quality attributes, but they each have their own language and sets of concepts.
Architects think in terms of architectural patterns [Buschmann 96]. However, what the
architect needs is a characterization of architectural patterns in terms of the factors that
affect quality attribute behavior so that a software design can be understood in terms of
those quality attributes.

What we present in this paper is an initial step toward having such a characterization. We
provide a short list of architectural patterns and brief descriptions of how to understand
them in terms of three quality attributes: modifiability, performance, and availability. We
call these patterns guality attribute design primitives. These patterns are, of necessity,
system independent. In order to use them, an architect must make them system
dependent. This paper demonstrates the application of our list to a portion of the
Enterprise Java Bean (EJB) specification. The difference between what we present here
and our ultimate goal is both depth and breadth. We expect our final list of architectural
patterns to be longer than the list presented here, although we do not expect the list to be
unmanageably long. We also expect the final descriptions to exist in more depth than we
present here and to include models that motivate the analysis. This paper, however, stands
on its own as an example of how EJB features can be understood in terms of more
general patterns and reasoning about those patterns.

The document is organized as follows: our initial list of patterns and descriptions is
presented in the appendix, but we provide our motivations for it in Section 2. In Section
3, we discuss a portion of the EJB specification and identify the features that we will be
discussing. Next, in Section 4, we present the quality attribute interpretation of the
portion of the EJB specification that is based on our quality attribute design primitives.
We close with some conclusions.

CMU/SEI-2001-TN-025 1

2 Quality Attribute Primitives

To reason about architectural patterns in quality attribute terms, we must be able to
characterize quality attributes requirements precisely and give an example of how to
reason about architectural patterns. We characterize quality attribute requirements using
general scenarios and we identify the architectural patterns on which we are focusing as
quality attribute design primitives (or attribute primitives) [Bass 00]. Attribute primitives
are an extension of our earlier work on attribute-based architectural styles [Klein 99].

2.1 Quality Attribute General Scenarios

To be able to analyze and evaluate the quality of any system, we first need to characterize
the various quality attribute requirements applicable to the system. Quality attribute
scenarios serve this purpose [Bass 01]. For the same reason that use cases are essential in
determining functional requirements, quality attribute scenarios are used to specify
quality attribute requirements. For five important quality attributes (modifiability,
performance, availability, security, and usability), we have enumerated a collection of
quality attribute general scenarios that are intended to encompass all of the generally
accepted meanings for these quality attributes. A general scenario is, in effect, a template
for generating a specific quality attribute scenario. For example, two (abbreviated)
modifiability general scenarios are

e “Changes to the platform occur.”
e “Additional distributed users arrive at the system.”

These scenarios are “general” in the sense that they are system independent. Collectively,
general scenarios provide a system-independent checklist for quality attribute
requirements. CMU/SEI-2001-TR-014 presents our initial attempt at a comprehensive list
of general scenarios for modifiability, usability, performance, reliability, and security
[Bass 01]. Of course, for any particular system or class of systems, not all of the general
scenarios for a particular attribute will be relevant, and the analyst must identify those
that should be considered and make those system specific.

To use general scenarios for a particular system or class of systems (in this case, EJB
systems), they need to be made specific. For example, the above two modifiability

general scenarios become

e The platform on which the EJB application runs changes. These platform changes
include JVM change, operating system change, hardware change, database driver
change, database change, EJB server and container change (across different vendor
products, and version upgrades). The system needs to be modified to continue to

provide current functionality.

2 CMU/SEI-2001-TN-025

e Additional online users connect to application server, possibly via a Web browser,
volume of online requests fluctuates (e.g., increased sales before Christmas or the last
few minutes of an online auction). The system should be able to handle the
large/varying volumes of client requests with limited modification to the application.

2.2 Quality Attribute Design Primitives

Just as general scenarios provide a template for specifying quality attribute requirements,
quality attribute design primitives are templates for “chunks” of architectural designs that
target the achievement of specific quality attribute goals [Bass 00].

Attribute primitives provide building blocks for constructing architectures. However, they
are building blocks with a focus on achieving quality attribute goals such as performance,
reliability, and modifiability goals. Quality attribute design primitives will be described in
a manner that illustrates how they contribute to achieving quality attributes. Therefore
each attribute primitive will be described not only in terms of its constituent components
and connectors, but also in terms of the qualitative and/or quantitative models that can be
used to argue how it affects quality attributes. For this document, we are concerned with
the following attribute primitives: Naming Server, Client/Server, Separation of Interface

from Implementation, Connection Manager, Load Balancing, Replication, Transactions,

Logging State Changes.

Consider, for example, the client/server attribute primitive. This is a collaboration
between the provider and users of set of services. The attribute primitive separates one
collection of responsibilities (the client’s) from another (the server’s). The consequence
of this separation is enhanced modifiability; modifying the implementation of the
services or modifying the number of servers providing services is invisible (at least in
principle) to the clients. Moreover, the addition of new clients has no effect on the server.

The client/server attribute primitive has modifiability as one focus. When we write-up
this attribute primitive, we will articulate what we mean by modifiability by describing
various modifiability general scenarios for which the mechanism is well suited, and we
will make qualitative and/or quantitative arguments as to why it is well suited for these
scenarios.

In addition, the effect of the client/server on other attributes must also be considered.
Separation of computations might improve reliability; and increased network traffic
might increase the vulnerability to certain types of security attacks. Each attribute
primitive write-up highlights possible side effects on other attributes.

In summary, each attribute primitive write-up addresses one or more quality attributes as
characterized by one or more general scenarios. It will offer a description of the
components, their relationships, and properties as they are relevant to the general scenario
and a rationale for why this ensemble contributes to achieving the general scenario. A
thumbnail sketch is a summary of an attribute primitive write-up. The thumbnail sketches

CMU/SEI-2001-TN-025 3

of attribute primitives that we use in our application to EJB are in the appendix of this
document.

4 CMU/SEI-2001-TN-025

3 Enterprise JavaBeans

As more businesses embrace the electronic marketplace business model, there is an
urgent need for business systems to be accessible via the Web. The Java 2 Enterprise
Edition (J2EE) specification from Sun Microsystems describes a multi-tiered architecture
for constructing enterprise-wide applications that enables systems to be accessible via the
Web [Liu 01].

J2EE makes it possible to reuse Java components in a server-side infrastructure. With
appropriate component assembly and deployment tools, the aim is to bring the ease of
programming associated with GUI-builder tools (like Visual Basic) to building server
applications. And by providing a standard framework for J2EE products based upon a
single language (Java), J2EE component-based solutions are, in principle, product
independent and portable between the J2EE platforms that are provided by various
vendors.

The major features that the J2EE platform provides are

e a multi-tiered distributed application model

e a server-side component model, i.e., Enterprise JavaBeans (EJB) model
e aunified security model

e built-in transaction control

A simple depiction of the J2EE multi-tier model is shown in Figure 1. The role of each
tier is as follows:

Client Tier: In a Web application, the client tier is composed of an Internet browser that
submits HTTP (hypertext transfer protocol) requests and downloads HTML (hypertext
markup language) pages from a Web Server. In an application not deployed using a
browser, stand-alone Java clients or applets can be used, and these would communicate
directly with the Business Component tier, using the Java Remote Method Invocation
(RMI) as the underlying protocol.

Web Tier: The Web tier runs a World Wide Web server to handle client requests, and
invokes J2EE servlets or Java Server Pages (JSPs). Servlets are invoked by the Web
server depending on the type of user request and will query the business logic tier to get
the required information to satisfy the request. The servlets then format the information
for return to the user via the Web server. JSPs are basically static HTML pages that
contain snippets of servlet code. The code is invoked by the JSP mechanism, which also
takes responsibility for formatting the dynamic portion of the page.

CMU/SEI-2001-TN-025 5

Business Component Tier: The business components constitute the core business logic
for the application. The business components are realized by Enterprise JavaBeans, the
software component mode! supported by J2EE. EJBs receive requests from servlets in the
Web tier, or directly from Java clients. EJBs then satisfy the request usually by accessing
some data sources, and return the results to the servlet or the Java client. EJB components
are hosted by a J2EE environment known as an EJB container. The container supplies a
number of services to the EIBs that it hosts. These services include transaction and life-
cycle management, state management, security, multi-threading, and resource pooling.
EJBs simply specify the type of behavior they require from the container at run time, and
then rely on the container to provide the services. This frees the application programmer
from cluttering the business logic with code to handle system and environmental issues.

Enterprise Information Systems Tier: This tier typically consists of one or more
databases and back-end applications like mainframes and other legacy systems. EJBs
must query these data stores to process requests. The Java Database Connectivity (JDBC)
drivers are typically used for accessing databases, and the Java Connector Architecture
(JCA) standard protocol is used to access packaged applications such as enterprise
resource planning (ERP) systems and customer relationship management (CRM)
systems, as well as various mainframe-based transaction processing systems.

Client Tier Web Tier Business Component Tier EIS Tier
[r
IApplication Components;
— HTTP Web RMI EJBs]
D —— server Servlets, > JCA @
Browser-based client JSPs o [::]
applications I |
(HTML, applets,
DHTMU/scripting) ERPs. CRMs
l:] B N Mainframe TP systems
- Java RMI e Container Services
[:] Components -
- . e.g., Java transaction JDBC
Java client applications service (JTS) ————— | RpBMS

r
@®
<

Client application
Software component
Enterprise JavaBeans
Data store

Access mechanism

CA0UD

Logical grouping

Figure 1: J2EE Multi-Tiered Application Architecture

6 CMU/SEI-2001-TN-025

In the remainder of the document, we will focus on the server-side component model:
Enterprise JavaBeans. The EJB specification describes a component-based framework for
constructing server-side Java applications. An EJB container provides a run-time
environment to host application components and supports these components by providing
services such as transaction, persistence, concurrency and security management. When a
client invokes a server component, the container automatically allocates a thread and
invokes an instance of the component. The container manages all resources on behalf of
the component and manages all interactions between the component and the external
systems such as database management systems. In the J2EE model, these services are
supplied through a set of standard vendor-independent interfaces. The EJB framework
thus provides an environment for people to build an enterprise application quickly.

However, ease of development and deployment are not enough; the resultant system must
exhibit suitable qualities, that is, suitable performance, reliability, security, usability, and
so on. For example, will the resultant EJB system behave responsively when handling a
dynamically changing volume of client requests? Web-enabling a business system means
opening up the business to potentially thousands and millions of customers in the Internet
world. If the current design cannot handle the volume, is the design scalable? Other
questions about reliability, security, modifiability, and usability can be asked as well.

In a nutshell we ask: What are the quality attribute ramifications of building systems
using the EJB component model? In this paper we use the notion of quality attribute
design primitives to explore this question.

CMU/SEI-2001-TN-025 7

4 Analyzing Enterprise Java Beans Systems Using Quality

Attribute Design Primitives

As mentioned earlier, EJB has many features that aid in the development of applications.
We will describe a typical configuration of these features and then use quality attribute
primitives to draw conclusions about the attribute-related ramifications of using these
features. For example, in an EJB context clients access services through a “home
interface” via the Java Naming and Directory Interface (JNDI), which obviates the need
for the client to know the physical location of the server and thus allows for ease of
service relocation. This is a form of a naming service, which is described in one of our

thumbnail sketches.

The objective of this section is to

e enumerate a specific set of features of interest to EJB
e recast this specific set of features in terms of attribute primitives

e use the qualitative analysis codified in each attribute primitive to offer reasoning
guidance for this style of EIB usage

4.1 A Typical Configuration: A Session Bean-Only Architecture

Figure 2 illustrates a simple EJB application architecture with a session bean (stateless or
stateful) that provides all the business functionality in its methods. We choose to use such
a simple EJB application architecture to focus on the EJB infrastructure features and the
design alternatives that the EJB environment supports. Even with a simple EJB
application architecture, many important EJB container services (such as naming and

transactions) are exercised.

8 CMU/SEI-2001-TN-025

Client Tier Business Component Tier R EIS Tier

Database JDBC
connection| > | RDBMS

D Client application
 I—

L__:' Software component
O Enterprise JavaBeans
S Data store

<«—p Access mechanism

Logical grouping

Figure 2: A Simple EJB Application Architecture

All Enterprise JavaBeans are implemented through a Home Object and an EJB Object.
The Home Object implements various EJB life-cycle methods such as the creation and
deletion of an EJB instance, as well as the “lookup” of a corresponding EJB Object. The
EJB Object is where the actual implementation of the business logic resides. The client
first accesses the home object via the home interface using the Java Naming and
Directory Interface (JNDI); the client can then obtain a reference to the EJB Object from
the home object. The client is now ready to make RMI calls to the EJB Object to request
that the business logic be carried out.

A typical EJB container or J2EE application server will provide database connection
management for EJB components to use to access business data in the EIS tier. The EJB
container also manages the life cycle (i.e., creation, replication, and deletion of EJB
Object instances) and routes requests to the appropriate EJB instance. Transaction control
and management are also provided by EJB containers.

From this relatively simple EJB application architecture, we can summarize the following
EJB features:

e Java Naming and Directory Interface (JNDI) — Clients access the home interface
via the Java Naming and Directory Interface (JNDI). The home object will in turn
pass to the client a reference to the EJB object.

¢ EJB Object Remote Interface — Once a client has access to the remote interface, it
can invoke business logic to be carried out by making RMI calls to the EJB Object.
The EJB Object basically presents to the client all the available services (or business
logic) provided by the session bean (which can be stateless or stateful).

CMU/SEI-2001-TN-025 9

o Server/Bean instance replication — The EJB server or container creates and
manages multiple instances of the same enterprise server bean.

e Load balancing for server/bean instances — Load balancing is a strategy for
dynamically routing client requests to a particular server/bean instance for
processing.

o Database connection pooling — When session beans need to read from and write to a
database, they first need to obtain a handle to a database connection. Application
server products such as the WebLogic Server provide a pool of ready-to-use database
connections for EJB server components to use and re-use.

e Transactions — When multiple updates to business data need to be done in an atomic
fashion, with consistent intermediate results, and these updates need to allow for
concurrent update operations, each with durable states at the end of the operations,
the server implementation needs to support transactions. As part of the transaction
services, logging is done to record state changes. In the case of failure, the system
can be rolled back to the previous consistent state.

We do not claim these are all of the EJB features that contribute to the quality of EIB
systems, but these are enough to demonstrate how to use the thumbnail sketches.

4.2 Approach

We will now use attribute primitives to explore the attribute behavior of the EJB
application architecture shown in Figure 2. In the next several sections, we will consider
the architecture’s modifiability, performance, and availability, respectively. For each
attribute, our approach is outlined below:

1. We will use general scenarios as the basis for creating EJB-specific scenarios that
specify important quality attribute requirements that need to be addressed by EJB.

2. The general scenarios will also lead us to relevant attribute primitive thumbnail
sketches (in the appendix).

3. The relevant EJB features are then explained and qualitatively analyzed in terms of
the attribute primitives. :

4. The qualitative analyses for each of the EJB features are then coalesced.

Note that general scenarios provide the link between EJB-specific scenarios and attribute
primitives. General scenarios provide a “bucket” in which EJB-specific scenarios can be
placed. General scenarios also provide explicit pointers to attribute primitives. Therefore
once an EJB-specific scenario is identified as an instance of a general scenario, one (or
possibly several) relevant attribute primitives have also been identified. The remaining
challenge is to find an instance of the attribute primitive in the specific architecture that’s
being analyzed. This is when the person with attribute primitive expertise interacts with
someone who has domain (in this case EJB) expertise to map the attribute primitive onto
the specific architecture and apply the general analysis codified in the attribute primitive.

We begin with modifiability.

10 CMU/SEI-2001-TN-025

4.3 Modifiability

Table 1 shows several general modifiability scenarios and the EJB-specific modifiability
scenarios suggested by them. This implements Step 1 of our approach.

Table 1: Modifiability Scenarios

General Modifiability Scenario

EJB-Specific Modifiability Scenario

The platform on which the system depends is
changed. The system must be modified to continue
to provide current functionality. The platform
change may be a change in hardware including
input and output hardware, it could be a change in
operating system, or it could be a change in COTS
middleware included in the system. Existing
functionality of the system should remain
unchanged.

The platform on which the EJB application runs
changes. These platform changes include changes to
the Java Virtual Machine (JVM), operating system,
hardware, database driver, database change, EJB
server and container (across different vendor
products, and version upgrades). The system needs
to be modified to continue to provide current
functionality.

A request arrives to add additional users,
potentially distributed. The system should be
modified to enable these additional users to access
its services while still maintaining quality of
service.

Additional online users connect to an application
server, possibly via a Web server and the volume of
online requests fluctuates (e.g., increased sales
before Christmas or the last few minutes of an
online auction). The system should be able to
handle the large/varying volumes of client requests
with limited modification to the application or, even
better, through self re-configuration.

Since each attribute primitive starts by identifying the relevant general scenario, general
scenarios can be viewed as an index for the set of attribute primitives. Table 2 maps the
two general scenarios in Table 1 to the relevant attribute primitives. This implements Step

2 of our approach.

Table 2:
Sketch

Locating Modifiability General Scenario Within Attribute Primitive

Portion of General Scenario

Attribute Primitive

Changing the hardware platform on which a service resides.

Naming Service

Adding additional users while maintaining other qualities such as

performance.

Client/Server

Implementation details change without affecting much of the rest of the

system.

Separation of Interface
from Implementation

Addition of functionality without impacting the rest of the system.'

Transactions

1

Notice that general scenarios point to attribute primitives in two ways: (1) the attribute

primitive directly addresses the general scenario, and (2) the attribute primitive affects the

general scenario as a side effect.

CMU/SEI-2001-TN-025

1

We now implement Step 3 of our approach. Each attribute primitive is mapped onto EJB
features and the analysis in the thumbnail sketch is used to yield an EJB-specific analysis.

e JNDI - JNDI is in part an instance of the Naming Service attribute primitive (AP). A
naming server places a level of indirection between the client and provider of a
service by providing a mapping from a service’s logical name to its physical location.
The client does not need to know where the server is physically located.

JNDI also is in part an instance of the Client/Server AP. The Client/Server AP is used
to manage multiple clients accessing a set of services and allows additional clients to
be easily added.

e EJB Object Remote Interface — The EJB Object Remote Interface is an instance of
the Separation of Interface from Implementation AP. The client does not need to
know the internal server implementation details; it needs to know only what services
the server provides. Details—such as how the server provides its services, the
creation and management of EJB server, and session bean instances—are hidden
from the client.

e Stateless session beans® — Stateless session beans with idempotent operations on the
server allow the addition of functionality to be an easier task, hence improving the
modifiability of the system. However state information between different method
calls has to be passed back and forth between the client and server instances. Session
management becomes a responsibility for the clients, impacting the modifiability of
the clients.

e Stateful session beans — The alternative to stateless session beans is stateful session
beans. In this case the stateful session beans handle state information on behalf of the
client. This creates static bindings between the client and server instance, which
makes the system inflexible.

e Transactions — When the transactional guarantees are supported by a third-party
implementation (e.g., container-managed transaction), decoupling of the EJB
components and the resource managers (i.e., Rational Database Management System
[RDBMS]) is enabled. The strict adherence to a standard interface such as the
X A/Open’s Distributed Transaction Processing model will enhance modifiability. By
separating application functionality from concerns of consistency, rollback, and
recovery, the addition of new functionality is simplified.

Modifiability strategies (Step 4 of our approach): The strategies used to increase
modifiability include forms of indirection and separation. These provide the ability to add
new server functionality, change server implementations, and change server location.

4.4 Performance
Table 3 shows a general performance scenario and the EJB-specific performance scenario

suggested by it.

2 Note that “stateless” and “stateful”” are component properties, not attribute primitives.

12 CMU/SEI-2001-TN-025

Table 3: Performance Scenarios

General Scenario EJB-Specific Refinement

Events arrive stochastically. On average, the For a set of random client requests, the system

system must complete n responses per unit time. needs to process at least n transactions per second
(TPS).

The general scenario in Table 3 points to the following attribute primitives shown in
Table 4:

Table 4: Locating Performance General Scenario Within Attribute Primitive

Portion of General Scenario Attribute Primitive

Naming Server

Events arrive stochastically. On average, the system must complete n Replication
responses per unit time. ~eeemmemeseeeeeeneeee o

Connection Manager

The attribute primitives in the above table map onto the following EJB features:

e JNDI - As pointed out in the Naming Server AP, the indirection introduced by JNDI
will introduce overhead (that is, additional execution time), an important component
property that affects performance. However, the JNDI lookup often occurs only once
when the client is looking for the session bean. All subsequent service calls are via
the EJB Object. The method invocation across a network cannot be avoided even if
the EJB programming model is not used. However, the resource usage across the
network needs to be accounted for when assessing throughput.

o Stateless — Stateless session beans in the server-side can be easily replicated to
handle larger volume of requests. Since each bean instance runs in its own thread,
bean replicas can take advantage of each other’s input/output (I/O) blocking times.
Moreover, as pointed out in the Client/Server AP, if different threads can be assigned
different priorities, a server will be able to offer clients with varying levels of service.
However, since there is no concept of bean priorities, all clients are treated roughly
equally.

e Stateful — Replication of stateful servers is possible; however, this incurs some
performance penalty due to the need to store the state information onto secondary
storage (in order to have a failsafe system, an availability consideration). However,
the consistency checks here for multiple stateful session beans is a difficult problem.
Most existing application server solutions either compromise on correctness, or incur
a performance penalty.

¢ Server/Instance replication — Dynamic creation and deletion of EIB instances as

supported by the Replication AP (depending on volume of requests) can help to
ensure a more scalable system that can better handle peak and off-peak loads.

CMU/SEI-2001-TN-025 13

Load balancing for server instances — Load balancing can work on two levels:
across different EJB instances, and/or across different EJB server instances in a
cluster. As pointed out in the Load Balancing AP there are different load-balancing
algorithms that can be used to improve throughput.

Database connection pooling — Establishing database connections is a slow
operation, expensive in terms of execution time. Hence, the pooling of database
corinections can enhance performance through the reuse of connections. Application
server products such as WebLogic Server provide a pool of ready-to-use database
connections for EJB server components to use and re-use. The EJB server component
implementation need not deal with issues related to setting up database connections.
It can focus on the business functionality implementation. As pointed out in the
Connection Manager AP, this separation of concerns at the implementation level
enhances usability for the EJB programmer and makes the system more modifiable.
Also, note that any shared resource can introduce blocking time as pointed out in the

Client/Server AP.
Transactions — As pointed out in the Transaction AP, additional performance
overhead is added due to transaction logging.

Performance strategies: There are four basic factors affecting response time:
introducing extra computation time due to overhead introduced by indirection and
redundancy, reducing the execution time overhead associated with establishing database
connections by establishing a shared pool of connections, exploiting physically
concurrent processing through replication and load balancing, and introducing blocking
time due to mutually exclusive access to database connections and to data via

transactions.

4.5 Availability

Table 5 shows several general availability scenarios and the EJB-specific performance

scenarios suggested by them.

14

CMU/SEI-2001-TN-025

Table 5: Availability Scenarios

General Scenario

EJB-Specific refinement

An internal component fails. The system is able to
recognize a failure of an internal component and
has strategies to compensate for the fault.

An internal component, such as an enterprise Java
Bean instance and a container service, fails. The
system should detect this and have strategies to
compensate for the fault.

An external component fails. The system has
alternative strategies to compensate for the fault.

An external component (such as database, database
server hardware, or network connection) fails or
times out. The system has alternative strategies to
compensate for the fault.

An event arrives at the system for which it was not
prepared. Such events could be unknown
messages, failure of a component, unexpected
timing behavior (too fast or too many), unavailable
resources (e.g. disk space), etc. The system has a
clear model about what is and is not allowed and
has strategies for handling events that are out of
scope.

An event arrives at the system for which it was not
prepared for. Such events could be unknown
messages, failure of a session bean, unexpected
request timing and volume behavior (too fast or too
many), unavailable resources (e.g. disk space,
memory, JVM threads, EJB system threads,
database connections in pool, etc). The system
needs to have a clear model about what is and is not
allowed and has strategies for handling events that
are out of scope.

The general scenarios in Table 5 point to the following attribute primitives shown in

Table 6:
Table 6: Locating Availability General Scenario Within Attribute Primitive
Portion of General Scenario Attribute Primitive
An external component fails. The system has alternative strategies to Logging State Changes
compensate for the fault.
Replication
An event arrives at the system for which it was not prepared. Transact:ons -------------
Logging State Changes

The attribute primitives in Table 6 map onto the following EJB features:

o Stateless server — The stateless server model together with idempotent operations
enable easier implementation of fail-over when the stateless server is replicated.
When a particular stateless server fails, its work can be re-directed to a different
server instance without implications for state management.

e Server/Instance replication — Replicated server instances also make the system
more available as if one server instance is down, another instance can take over the
work. In an EJB system, reconfiguration could occur at many different levels: e.g.,
clustering of machines allows the client request to be re-routed to a different machine

CMU/SEI-2001-TN-025

15

when one machine fails, and replication of stateless session beans allows client
request to be dynamically re-routed to a good session bean from a dead session bean.

e Transactions — As pointed out in the Transaction AP, the guaranteed nature
(supported by rollback, commit operations via logging) makes transactional systems
more robust; hence, it improves availability and reliability by helping to ensure that
the system is always in a consistent state and by providing a system-wide strategy for
handling certain classes of failures.

Availability strategies: Availability is enhanced by having replicates of some
components, by logging information, and by guaranteeing atomicity of database accesses.

16 CMU/SEI-2001-TN-025

5 Insights into EJB from the Analysis

5.1 Design Decision Support

The EJB attribute primitives enumerated in the document can be roughly classified into
two categories. One is those attribute primitives that aid in the fundamental
understanding of the EJB programming model and the container behavior. This type of
EJB attribute primitive is typified by the Separation of Interface from Implementation
AP. The attribute primitive write-up enhances our understanding of EJB container and
server behaviors and supports our reasoning of the total system quality.

The second category of EJB attribute primitives are those that present themselves as a
design option; for example, whether to replicate stateful or states servers are alternative
design strategies, and the attribute primitive write-up for each of them can assist with the
design decision. Architects can analyze and prioritize the various quality requirements,
and then choose the appropriate mechanism that has the most positive impact on the more
important quality requirement, while having a minimal negative side effect.

5.2 Evaluating EJB Paradigm

A valuable by-product of the process for identifying EJB attribute primitives is a critical
assessment of the ETB programming model. Here, we summarize a list of observations
about EJB features in relation to various quality attributes. Some of these observations
follow from the discussion in the previous sections of this paper. Other observations we
made about other aspects of EJB while writing this document are summarized below.

Observations based on the body of this document:

e Stateful servers — The stateful server model will always be less scalable than a true
stateless server model. The stateful session beans model may be useful to maintain
session information. However, in the world of e-commerce, where scalability is a
primary concern, server side implementations must be kept “truly stateless™ to ensure
problem-free server replication for system scaling.

e JNDI - The initial JNDI lookup can potentially be a bottleneck if an inadequate
name server implementation is used.

The JNDI lookup is often a once-off operation (i.e., when the client is looking for a
session bean). All subsequent service calls are via the EJB Object. The method
invocation across a network cannot be avoided even if the EJB programming model
is not used. Hence, the modifiability benefit here by far outweighs the possible
performance degradation.

CMU/SEI-2001-TN-025 17

The delegation from the EJB Object to the actual session bean instance is a relatively
cheap local call. Hence, the modifiability benefit here by far outweighs the possible
performance degradation.

The benefit arising from availability and performance usually outweighs the
complexity of session management on the client side.

Server/Instance replication — There is some overhead involved in the dynamic
management of bean instances. However, this is likely to be a relatively small
overhead in comparison to the greater gains in responsiveness.

Transactions — The tradeoff here is between the robustness of the system and
performance. If the ACID (Atomic, Consistency, Isolation, and Durability) property
is necessary, then one needs to investigate whether the throughput supported by the
transactional system is “good enough,” and whether it’s “scalable enough” to handle

peak loads.

Bean-Managed Transaction (BMT) allows for hand-crafted code, which is often
optimized for performance. Container-Managed Transaction (CMT) uses the existing
transaction services provided by the EJB container, requires less programming effort
from the developer, and, as a result, generated code might incur a performance
penalty.

High performance means nothing if the EJB server system cannot provide consistent
and accurate business data. However, design consideration is required to make sure
that the logging is not a bottleneck.

Additional observations: While we didn’t analyze EJB from the points of view of
security and usability, we can still make several observations:

Lack of in-built security on EJB resources — The EJB model assumes that security is
taken care of. However, this is often not the case. Hence, what we have is a vast array
of third-party security add-on products for handling security issues.

Lack of usability concerns — The popular Model View Controller (MVC) pattern
assists with the usability attribute to some extent. However, the EJB programming
paradigm creates the decoupling of presentation model layers, which means that EJB
server-side designers often overlook the usability issues. The end result is a complex
mesh of presentation logic calling upon a large set of model elements, which incurs a
heavy performance penalty and ends up being a maintenance nightmare.

18

CMU/SEI-2001-TN-025

6 Conclusion

Our goal was to assess the utility of mapping between the system-independent attribute
primitive write-ups and EJB and to see whether the write-ups provided useful insights
into the quality of EJB. We feel that we have successfully demonstrated a means of
understanding the quality attribute behavior of EIB. Furthermore this understanding does
not depend on having a deep understanding of the quality attributes, but depends only on
how to map the general scenarios to EJB-specific scenarios and the attribute primitives to
the EJB features. Whether our analysis demonstrated quality aspects of EJB that were
previously unknown is not the point. The point is that attribute primitives can be used to
make the quality aspects of EJB more generally available to those designing systems
using EJB.

Further, we are encouraged that the codification of these commonly used architectural
primitives enables architects to make better informed architectural design decisions
through the following concrete ways:

1. General scenarios are a good checklist in compiling quality requirements for a
particular system.

2. Candidate architectural primitives can be found that satisfy the corresponding
quality requirements identified in 1 above.

3. Tradeoff issues arising from the use of these attribute primitives can be identified
through the analysis of “side-effects.”

CMU/SEI-2001-TN-025 19

References

[Bass 00]

[Bass 01]

[Buschmann 96]

[Klein 99]

[Liu 01]

Bass, Len; Klein, Mark; & Bachmann, Felix. Quality Attribute
Design Primitives (CMU/SEI-2000-TN-017, ADA 392284).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2000. Available WWW
<http://www.sei.cmu.edu/publications/documents/00.reports/
00tn017.html>.

Bass, Len; Klein, Mark; & Moreno, Gabriel. Applicability of
General Scenarios to the Architecture Tradeoff Analysis Method
(CMU/SEI-2001-TR-014). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2001. Available WWW
<http://www.sei.cmu.edu/publications/documents/O1.reports/
01tr014.html>.

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad,
Peter; & Stal, Michael. Pattern-Oriented Software Architecture: A
System of Patterns. New York, NY: John Wiley & Sons, 1996.

Klein, M.; Kazman, R.; Bass, L.; Carriere, J.; Barbacci, M.; &
Lipson, H. “Attribute-Based Architecture Styles, Software
Architecture” 225-243. Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1). San Antonio, TX,
February 1999. '

Liu, Anna. “J2EE in 2001.” Component Development Strategies
Newsletter, Cutter Consortium (September 2001).

20

CMU/SEI-2001-TN-025

Appendix: Attribute Primitives and Attribute Properties

This appendix contains a list of the attribute primitive thumbnail sketches that we used in
this paper. The thumbnail sketch is meant to be suggestive of the type of information that
will ultimately be contained in the full write-up of an attribute primitive. However we
anticipate that complete AP write-ups will have description sections that describe the
primitives in terms of components, their properties and their relationships and an analysis
section that offers fairly detailed reasoning about how the mechanism contributes to the
achievement of its targeted quality attribute.

A.1 Modifiability Attribute Primitives

A.1.1 Naming Server

General Scenario: Modifiability — Change physical location of service with minimal
impact on the rest of the system.

Description: The components involved that use a naming server include the client who
requests services, the server who encapsulates those services, and the naming server that
is an intermediary and provides a mapping from a service to the service’s location. The
client acquires the server’s location and then makes service calls at that location. (A
proxy serves a similar purpose, except it makes the service calls on the client’s behalf,
obviating the need for the client to be concerned with location at all.)

Analysis Principles: Indirection is a fundamental strategy for achieving some aspects of
modifiability. Indirection is accomplished by using an intermediary that hides
information. By using an intermediary, it hides service location, thus allowing for
location independence. Clients of a service can acquire a service’s location without
having it “hard-coded” into the service call. The client does not need to know where the
server is physically located at compile time; rather, the location is acquired at runtime,
thus allowing the location of the service to be easily changed.

Side Effects: Indirection introduces execution overhead, possibly degrading response
time. The degree of overhead depends on how often the location must be determined
relative to the frequency of service calls and how long it takes to resolve the location.

CMU/SEI-2001-TN-025 21

A.1.2 Client/Server?
General Scenario(s): Modifiability — Number of users changes while maintaining other

qualities.

Description: The Client/Server attribute primitive uses the strategy of separation as a
means for achieving several different attribute goals. Naturally, the client and the server
are the main components involved. The client is active and initiates action; the server is
passive and encapsulates common services needed by all of the clients. Servers can be
implemented as stateless or stateful on the same processor as the clients or on different
processors, in a single process or in multiple processes, and on a single processor or as a
cluster on multiple processor, just to name a few of the alternatives.

Analysis Principles: Multi-threaded or reentrant servers facilitate adding more clients
since each client will exist independently without affecting existing clients.

Side Effects: If session management is performed at the server side, then the server is a
single point of failure. If session management is performed at the client side, then servers
can be replicated but each communication between the client and the server must include
the current state of the session. Deploying the server on one machine and the clients on
others improves performance since it provides dedicated computation power for the
clients and eliminates the network traffic between the user’s computer and the combined

client/server computer.

A.1.3 Separation of Interface from Implementation

General Scenario: Modifiability — Change the implementation of a service.

Description: A module serves as an interface to another module or an interface is written
in an interface definition language (IDL). In addition to implementation details being
hidden, the specific language and syntax are hidden. The only re(juirement is for the
client and the server body to conform to the IDL specification.

Analysis Principles: The client does not need to know the internal server implementation
details including the implementation language. It only needs to know what services the
server provides. This offers flexibility in changing the implementation.

Side Effects: Extra levels of indirection may degrade performance. Also it is necessary to
understand how other quality attributes change when the implementation changes.

> You will notice that the Client/Server AP appears under several attributes. The description
section is the same for each, but the analysis section will focus on the specific attribute.

22 CMU/SEI-2001-TN-025

A.2 Performance Attribute Primitives

A.2.1 Connection Manager

General Scenario: Performance — Require bounded response time and/or certain system
throughput.

Description: When consumers need to use a resource, they first need to obtain a handle
to connect to that resource. This attribute primitive concerns the creation of a pool of
connections that are created ahead of time and shared by all clients.

Quality Attribute Analysis: Establishing connections is a slow operation. Hence, the
pooling of connections enhances performance. During consumer start-up time, initial
connection setup takes some time. However, initial connection time is a one-time event.
Improvement of run-time performance due to connection pooling will overcome this
start-up overhead as the number of consumers per connection increases.

Side Effects: The consumer implementation need not deal with connection setup issues.
It can focus on its implementation. This separation of concerns at the implementation
level makes the system more modifiable.

A.2.2 Load Balancing

General Scenario: Performance — Require bounded response time and/or certain system
throughput.

Description: Load balancing dynamically routes client requests to a particular server
instance for processing.

Analysis Principles: There may be different load-balancing algorithms used: round-
robin, least loaded server, random, etc. The aim is to distribute client requests as evenly
as possible over different server components to ensure the highest possible system
throughput. The benefits gained depend on whether component instances reside on the
same server or on different servers and the degree to which they suspend for VO.

Side Effects: If the load-balancing algorithm is implemented in a central request router,

than this is potentially a single point of failure and a performance bottleneck. If the load-
balancing algorithm is distributed, then additional network traffic is required to keep the
different portions of the algorithm synchronized.

A.2.3 Client/Server

General Scenario: Performance — Require bounded response time and/or certain system
throughput.

Description: The client/server attribute primitive uses the strategy of separation as a
means for achieving several different attribute goals. Naturally, the client and the server

CMU/SEI-2001-TN-025 23

are the main components involved. The client is active and initiates action; the server is
passive and encapsulates common services needed by all of the clients. Servers can be
implemented as stateless or stateful, on the same processor as the clients or on different
processors, in a single process or in multiple processes, and on a single processor or as a
cluster on multiple processor, just to name a few of the alternatives.

Analysis Principles: Multi-threaded or reentrant servers facilitate adding more clients
thus enabling each thread to exploit the I/O blocking time of other threads and also
enabling levels of service by assigning different priorities to different threads. This allows
for increasing throughput in general and provides the ability to manage throughput for
various priority levels. Furthermore, performing computations of the client on the client’s
computer increases the computation power available for that computation and reduces the
network traffic if the computation was performed on the server computer. On the other
hand if services require mutually exclusive access, while one client is being served other

clients can be blocked.

Side Effects: Changes to the server are easily deployed without affecting the clients. If
session management is performed at the server side, then the server is a single point of
failure. If session management is performed at the client side, then servers can be

replicated, but each communication between the client and the server must include the

current state of the session.

A.3 Availability Attribute Primitives
A.3.1 Replication

General Scenario: Availability — An internal component fails and the system is able to
recognize the failure and has strategies to compensate for the fault.

Description: Multiple instances of the same component. Reconfiguration enables
recovery from error by switching to redundant components.

Analysis Principles: Replicated component instances are a building block for increasing
reliability. If one instance is down, another instance can take over the work. One must be
aware of common mode failures that can simultaneously affect all replicas and thus

prevent availability benefits from accruing. Also the failure detection and voting scheme

can dramatically impact availability.

Side Effects: Naturally there is some overhead involved in the dynamic management of
component instances. Dynamic creation and deletion of component instances (depending
on volume of requests) can help a system scale to handle peak and off-peak times. The
question tends not to be whether or not to replicate, but rather how to fine tune the
amount of replication given fixed system resources (e.g., memory, optimal thread
number, database connection numbers). Provided that the redundant components are not

24 CMUY/SEI-2001-TN-025

idle, the redundant/replicated component can share the workload, hence enhancing

performance.

A.3.2 Transactions

General Scenario: Availability — An internal component fails, and the system is able to
recognize the failure and has strategies to compensate the fault.

Description: Transactions allow multiple updates to business data in an atomic fashion,
with consistent intermediate results, and they enable concurrent update operations, each
with durable states at the end of the operations.

Analysis Principles: Guaranteed-nature atomicity plus rollback and logging enable
transactional systems to contribute to availability and reliability.

Side Effects: Since container-managed transactions are simple to use and enable
decoupling between the server components and the resource managers (i.e., RDBMS),
they also facilitate modifiability.

Additional performance overhead due to transaction logging; serialization of operations
(requiring one customer to wait until completion of the current customer’s request) also
slows down the system.

A.3.3 Logging State Changes

General Scenario: An internal or external component fails. The system is able to
recognize the failure and has strategies to compensate for the fault.

Description: As part of the transaction services, logging is done to record state changes.
In the case of failure, the system can then be rolled back to its previous consistent state.

Quality Attribute Analysis: Availability and Reliability. In order to recover in the event
of a failure, the current state must be available to the component with current control.
One technique for ensuring this is to record state changes so that the current state can be
recovered.

Side Effects: Logging (especially persistent logging) incurs a performance penalty.

CMU/SEI-2001-TN-025 25

26

CMU/SEI-2001-TN-025

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions tor reducing this burden, to Washington Headquarters Services, Directorate for intormation Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-

0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) Qctober 2001 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Analyzing Enterprise JavaBeans Systems Using Quality Attribute Design Primitives F19628-00-C-0003

6. AUTHOR(S)
Anna Liu, Len Bass, Mark Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2001-TN-025
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Quality attribute requirements such as those for performance, security, modifiability, reliability, and usability have a
significant influence on the software architecture of a system. At the Software Engineering Institute, we are studying
and codifying the relationship between quality attribute requirements and the architectural design strategies that impact
their achievement. In CMU/SEI-2000-TN-017 [Bass 00], we introduced the notion of quality attribute design primitives.
Quality attribute design primitives (or attribute primitives) are architectural building blocks that target the achievement of
one—or sometimes several—quality attribute requirements. Our intent is to codify a fairly comprehensive set of
attribute primitives in a manner that articulates how each attribute primitive makes its specific contribution toward the
achievement of one or several attribute goals. We believe this will provide a very powerful “language” for constructing or
analyzing software architectures in relation to quality attribute requirements. To determine the expressive and
explanatory power of these attribute primitives, we will examine various classes of systems. This paper uses attribute
primitives to examine the qualities of Enterprise JavaBeans (EJB)-based systems. In particular, we find that attribute
primitives hold promise for providing insight into the quality attribute consequences of using various EJB infrastructure
features.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Enterprise JavaBeans (EJB), quality attribute design primitive, quality attribute 33
requirements, software architecture

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

20. LIMITATION OF ABSTRACT
uL

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

